A novel, rapid, and highly sensitive mass assay for phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and its application to measure insulin-stimulated PtdIns(3,4,5)P3 production in rat skeletal muscle in vivo.

نویسندگان

  • J van der Kaay
  • I H Batty
  • D A Cross
  • P W Watt
  • C P Downes
چکیده

The pivotal role of phosphatidylinositol 3-kinase (PI 3-kinase) in signal transduction has been well established in recent years. Receptor-regulated forms of PI 3-kinase are thought to phosphorylate phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) at the 3-position of the inositol ring to give the putative lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4, 5)P3). Cellular levels of PtdIns(3,4,5)P3 are currently measured by time-consuming procedures involving radiolabeling with high levels of 32PO4, extraction, and multiple chromatography steps. To avoid these lengthy and hazardous procedures, many laboratories prefer to assay PI 3-kinase activity in cell extracts and/or appropriate immunoprecipitates. Such approaches are not readily applied to measurements of PtdIns(3,4,5)P3 in extracts of animal tissues. Moreover, they can be misleading since the association of PI 3-kinases in molecular complexes is not necessarily correlated with the enzyme's activity state. Direct measurements of PtdIns(3,4,5)P3 would also be desirable since its concentration may be subject to additional control mechanisms such as activation or inhibition of the phosphatases responsible for PtdIns(3,4,5)P3 metabolism. We now report a simple, reproducible isotope dilution assay which detects PtdIns(3,4,5)P3 at subpicomole sensitivity, suitable for measurements of both basal and stimulated levels of PtdIns(3,4,5)P3 obtained from samples containing approximately 1 mg of cellular protein. Total lipid extracts, containing PtdIns(3,4,5)P3, are first subjected to alkaline hydrolysis which results in the release of the polar head group Ins(1,3,4,5)P4. The latter is measured by its ability to displace [32P]Ins(1,3,4,5)P4 from a highly specific binding protein present in cerebellar membrane preparations. We show that this assay solely detects PtdIns(3,4,5)P3 and does not suffer from interference by other compounds generated after alkaline hydrolysis of total cellular lipids. Measurements on a wide range of cells, including rat-1 fibroblasts, 1321N1 astrocytoma cells, HEK 293 cells, and rat adipocytes, show wortmannin-sensitive increased levels of PtdIns(3,4,5)P3 upon stimulation with appropriate agonists. The enhanced utility of this procedure is further demonstrated by measurements of PtdIns(3,4,5)P3 levels in tissue derived from whole animals. Specifically, we show that stimulation with insulin increases PtdIns(3,4,5)P3 levels in rat skeletal muscle in vivo with a time course which parallels the activation of protein kinase B in the same samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo analysis of 3-phosphoinositide dynamics during Dictyostelium phagocytosis and chemotaxis.

Phagocytosis and chemotaxis are receptor-mediated processes that require extensive rearrangements of the actin cytoskeleton, and are controlled by lipid second messengers such as phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3] and phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2]. We used a panel of pleckstrin homology (PH) domains with distinct binding specificities for PtdIns(3...

متن کامل

Nerve growth factor- and epidermal growth factor-stimulated translocation of the ADP-ribosylation factor-exchange factor GRP1 to the plasma membrane of PC12 cells requires activation of phosphatidylinositol 3-kinase and the GRP1 pleckstrin homology domain.

ADP-ribosylation factors (ARFs) are small GTP-binding proteins that are regulators of vesicle trafficking in eukaryotic cells. GRP1 is a member of a family of ARF guanine-nucleotide-exchange factors that binds in vitro the lipid second messenger phosphatidylinositol 3,4, 5-trisphosphate [PtdIns(3,4,5)P3]. In order to study the effects of PtdIns(3,4,5)P3 on the function of GRP1, we have cloned t...

متن کامل

Specific binding of the Akt-1 protein kinase to phosphatidylinositol 3,4,5-trisphosphate without subsequent activation.

Recent evidence has suggested that activation of phosphoinositide 3-kinase (PI 3-kinase) is required for the activation of Akt-1 by growth factors and insulin. Here we demonstrate by two independent methods that Akt-1 from L6 myotubes binds to PtdIns(3,4,5)P3, PtdIns(3,4)P2 and PtdIns(4,5)P2 when presented against a background of phosphatidylserine (PtdSer) or a 1:1 mixture of PtdSer and phosph...

متن کامل

Regulation of phosphatidylinositol 3-kinase activity and phosphatidylinositol 3,4,5-trisphosphate accumulation by neutrophil priming agents.

Neutrophil priming by agents such as TNF-alpha and GM-CSF causes a dramatic increase in the response of these cells to secretagogue agonists and affects the capacity of neutrophils to induce tissue injury. In view of the central role of phosphatidylinositol 3-kinase (PI3-kinase) in regulating NADPH oxidase activity we examined the influence of priming agents on agonist-stimulated phosphatidylin...

متن کامل

High-Resolution Structure of the Pleckstrin Homology Domain of Protein Kinase B/Akt Bound to Phosphatidylinositol (3,4,5)-Trisphosphate

The products of PI 3-kinase activation, PtdIns(3,4,5)P3 and its immediate breakdown product PtdIns(3,4)P2, trigger physiological processes, by interacting with proteins possessing pleckstrin homology (PH) domains. One of the best characterized PtdIns(3,4,5)P3/PtdIns(3,4)P2 effector proteins is protein kinase B (PKB), also known as Akt. PKB possesses a PH domain located at its N terminus, and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 9  شماره 

صفحات  -

تاریخ انتشار 1997